A vacuum topped Canadian oilsands bitumen (VTB) was subjected to solvent precipitation and subsequently characterized by elemental analysis, gel permeation chromatograph (GPC), IH-NMR spectroscopy and negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Effects of experimental conditions such as solvent types (n-Cs, n-C6, and n-C7), solvent purity, and solvent washing time on asphaltenes yields, bulk composition, and molecular composition of detectable heteroatom compounds in ESI source were determined. Elemental nitrogen and sulfur were enriched in asphaltenes while elemental oxygen had comparable content in maltenes and asphaltenes. Molecular compo- sition of asphaltenes varies with separation conditions. The N1 and O1 species identified by ESI FT-ICR MS were enriched in maltenes. The 02 species exhibited two different double bond equivalents (DBE) distributions and solubility in normal paraffin solvents, indicating two types of molecular structures. Multi oxygen atom containing compounds mainly detected in asphal- tenes. Compound class distributions are similar for maltenes derived from n-Cs, n-C6, and n-C7 , as well as for asphaltenes. The cyclic paraffin impurities in normal paraffin solvents had a significant influence on asphaltenes yields and heteroatom molecu- lar composition. A portion of neutral N1 species and acidic 02 species adsorbed on asphaltenes could be dissolved by increas- ing washing time. Cautions should be exercised when interpreting the properties and composition of asphaltenes obtained with different experimental conditions.
WANG LiTaoHE ChenLIU YangZHAO SuoQiZHANG YaHeXU ChunMingCHUNG Keng H.SHI Quan
This paper examined the bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds in Sudan heavy petroleum fraction. Both broadband and quadrupole isolation modes positive-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with collision induced dissociation (CID) tech- niques were used to characterize a low sulfur crude oil derived vacuum residuum (VR). The appropriate CID operating condi- tion was selected by comparing the molecular weight distributions of the basic nitrogen compounds under various CID operat- ing conditions. Both odd- and even-electron fragment ions were observed from the mass spectrum, indicating that the hetero- lyric and homolytic bond cleavages occurred simultaneously during the CID process. The odd-electron fragment ions were predominant in each class species, indicating preferential heterolytic bond cleavages. At the optimal CID condition, the alkyl groups decomposed deeply and just left the aromatic cores of the nitrogen compounds. No Significant variation in double bond equivalent (DBE) value was observed between the fragment and parent ions, revealing that the domination of single core structure.
ZHANG LinZhouZHANG YaHeZHAO SuoQiXU ChunMingCHUNG Keng H.SHI Quan
Delayed coking is an important petroleum resid conversion process.The processability of coking liquids is known to be dependent on the heteroatom compounds present in the coking liquids.Eight commercial delayed coking liquids were characterized by electrospray ionization(ESI)Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS)and gas chromatographic techniques.High relatively abundant heteroatom compounds in the coking liquids were 1-4 aromatic-ring pyridinic nitrogen compounds,carbazoles,benzocarbazoles,phenols,mercaptans,benzothiophenes,dibenzothiophenes,and naphthobenzothiophenes.Coking liquids derived from various feeds had similar compound class types,molecular weight distribution ranges,and double bond equivalents(DBE).However,the concentration of individual compounds and the distribution of DBE versus carbon number of heteroatom compounds varied.A comparison of heteroatom compounds in coker feeds and products revealed the various reaction mechanism of heteroatom compounds occurred during the coking process.The results suggested that molecular-level process models can be developed for optimization of unit operation to obtain desirable products that meet the environmental specifications and quality requirements.
Miao HuChuang GuoLinzhou ZhangSuoqi ZhaoKeng H. ChungChunming XuQuan Shi