In this study, a simple impedance based technology for measuring bacterial concentrations was developed. The measurement system includes the signal amplification, copper probes and a sample loader. During the experiments, the conductance of Bacillus subtilis var niger, Pseudomonas fluorescens, and Escherichia coli were measured using the combination of a pre-amplifier and a lock-in amplifier. The conductance data were modeled verses the bacterial concentrations. Results indicated that the relationship between the conductance of bacterial suspensions and their concentrations follows a generic model: Y=C1+C2×e ( X/C3 ) , where Y is the conductance (S), X is the bacterial concentration (Number/mL: abbreviated to N/mL) for all species tested, and C1 3 are constants. Gram negative P. fluorescens and E. coli assumed similar conductance curves, which were flatter than that of gram positive B. subtilis var niger. For P. fluorescens and E. coli the culturing technique resulted in higher concentration levels (statistically significant) from 2 to 4 times that measured by the impedance based technology. For B. subtilis var niger, both methods resulted in similar concentration levels. These differences might be due to membrane types, initial culturability and the obtained conductance curves. The impedance based technology here was shown to obtain the bacterial concentration instantly, holding broad promise in realtime monitoring biological agents.
Bioaerosol charge information is of vital importance for their electrostatic collection. Here, electrostatic means and molecular tools were applied to studying bioaerosol charge dynamics. Positively or negatively charged bioaerosols were collected using an electrostatic sampler operated with a field strength of 1.1 kV cm 1 at a flow rate of 3 L min 1 for 40 min. Those with fewer or no charges bypassing the sampler were also collected using a filter at the downstream of the electrostatic sampler in one environment. The experiments were independently conducted three times in three different environments. The collected bacterial aerosols were cultured directly on agar plates at 26°C, and the colony forming units (CFU) were manually counted. In addition, the CFUs were washed off from the agar plates, and further subjected to polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) for culturable diversity analysis. The results revealed remarkable differences in positively and negatively charged culturable bacterial aerosol concentration and diversity among the studied environments. In the office environment, negatively charged culturable bacterial aerosols appeared to dominate (P = 0.0489), while in outdoor and hotel environments both polarities had similar concentration levels (P = 0.078, P = 0.88, respectively). DGGE patterns for positively charged culturable bacterial aerosols were shown strikingly different from those of negatively charged regardless of the sampling environments. In addition, for each of the environments positively charged culturable bacterial aerosols collected were found to have more band pattern similarity with those positively charged for respective regions of agar plates than those negatively charged, and vice versa. The information developed here is useful for developing efficient electrostatic sampling protocols for bioaerosols.
There is an increasing interest in understanding ambient bioaerosols due to their roles both in health and in climate. Here, we deployed an Ultraviolet Aerodynamic Particle Sizer to monitor viable (fluorescent) bioaerosol concentration levels at city centers (highly polluted) and their corresponding suburbs (near pristine) (total 40 locations) in 11 provinces featuring different climate zones in China between July 16 and 28, 2013. The concentration levels of viable bioaerosol particles (BioPM) of 〉0.5 μm were measured, and corresponding percentages of BioPM% (biological fraction of total PM) and BioPM2.5% (biological fraction of PM2.5) in particulate matter (PM) and BioPM, respectively, were determined. For some key cities, indoor viable bioaerosol levels were also obtained. In addition, bacterial structures of the air samples collected across these monitoring locations were studied using pyrosequencing. BioPM concentration levels ranged from 2.1 ×10^4 to 2.4 × 10^5/m3 for city centers [BioPM% = 6.4 % (4-6.3 %)] and 0.5 × 10^4 to 4.7 × 10^5/m3 for suburbs [BioPM% = 10 % (4-8.7 %)]. Distinctive bioaerosol size distribution patterns were observed for different climate zones, e.g., some had fluorescence peaks at 3 μm, while the majority had peaks at 1 μm. Ambient bacterial aerosol community structures were also found different for different geophysical locations. Results suggest that there was a poor overall relationship between PM and BioPM across 40 monitoring locations (R2= 0.081, two-tailed P value = 0.07435). Generally, city centers had higher PM concentrations than suburbs, but not BioPM and BioPM%. Indoor bioaerosol levels were found at least tenfold higher than those corresponding outdoors. Bacillus was observed to dominate the bacterial aerosol community in the air sample.
Kai WeiYunhao ZhengJing LiFangxia ShenZhuanglei ZouHanqing FanXinyue LiChang-yu WuMaosheng Yao