A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to solve the Navier-Stokes equations in two major steps. A top-layer pressure method is proposed to minimize the number of vertical layers and subsequently the computational cost. Three classical examples of small amplitude free surface flows are used to demonstrate the capability and efficiency of the model. The satisfactory results demonstrated the capability and efficiency of modelling a range of small amplitude free surface flows with only a small number of vertical layers.
With the Yangtze River Estuary as an example, this paper analyzes the influence of human activity on the sea water content, the sediment content and the regional transport situation. In both flood seasons and dry seasons, as well as in the whole year, the sediment discharge rate and the suspended sediment concentration (SSC) in the estuary area of the Yangtze River show decreasing trends. In the estuary area, the amount of sediment transported into the South and North Branches and the offshore area is also in a decreasing trend over the years. The SSCs at the sections at the entrances of the South Branch, the South Channel, the North Channel and the South Passage in the Yangtze River Estuary show decreasing trends during 1959-2011. The remote-sensing data reveal that for the same runoff and tidal current combination, the SSC in the surface water is decreased, caused by the dramatic decrease in the sediment discharge and the sediment content from the watershed. Although the SSC in the offshore area does not exhibit an apparent decreasing trend, the SSC in the nearshore area drops by 21.42% during the period of 2003-2011 as compared with that during the period of 1985-2002 before the impounding of the Three Gorges Reservoir. The sediment re-suspension in the estuary slows down the reduction of the SSC. The period of2003-2011 is dry years for the Yangtze River, when the flow is relatively low. The peak value of the SSC in the coast area shifts inwards for about 1/60 of longitude. Due to the deepwater channel improve- ment project in the North Passage at the Yangtze River Estuary in 1998, the SSC in the waterway area is decreased. With the de- crease of the divided flow ratio and the sediment splitting ratio in the entrance and the exit of the North Passage, the SSC in the upper and lower reaches of the North Passage during the period of 2008-2011 is decreased by about 14.25% as compared with that during the period of 2000-2007. Primarily due to the jetty at the south side, the SSC in the middle reach shows an in