Density functional theory(DFT) and coupled cluster theory(CCSD(T)) calculations were employed to investigate the structural and electronic properties of Nb S6^- and Nb S6 clusters. Generalized Koopmans' theorem was applied to predict the vertical detachment energies and simulate the photoelectron spectra(PES). The current study indicated that various types of sulfur ligands(i.e., S^(2-), S^(2-), S2^(2-) and S3^(2-)) were presented in the lowest-energy structures of Nb S6^(-/0). The ground-state structure of Nb S6^- is shown to be Cs(~1A') symmetry with a terminal S^(2-), a side-on bound S2^(2-) and a S3^(2-) ligands. Molecular orbital analyses were performed to analyze the chemical bonding in NbS6^(-/0) clusters and elucidate their structural and electronic properties.
WANG BinLI Qian-QianWANG Jian-FuHUANG XinZHANG Yong-Fan
Carbon dioxide adsorbed on different kinds of CaO surfaces has been investigated with the help of the first principle density functional theory plane wave calculations. Various possible configurations have been considered and the calculated results showed that CO2 was strongly adsorbed by C atom bonded with the CaO (001) and (110) surfaces with adsorption energies of 1.38 and 3.22 eV, respectively. The adsorption of CO2 molecule on defect surfaces is complicated compared with that on the pristine surfaces. The adsorption energy of CO2 absorbed on the CaO(110) surface is larger than that of CaO(001) surface when the type of defect surface is the same.