您的位置: 专家智库 > >

国家重点基础研究发展计划(2006FY110100)

作品数:5 被引量:86H指数:5
相关作者:王椿镛丁志峰常利军更多>>
相关机构:中国地震局地球物理研究所更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:天文地球一般工业技术电气工程更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 5篇天文地球
  • 1篇电气工程
  • 1篇一般工业技术

主题

  • 3篇UPPER_...
  • 2篇SKS
  • 2篇LITHOS...
  • 2篇T-WAVE
  • 1篇首都圈
  • 1篇首都圈地区
  • 1篇各向异性
  • 1篇NORTH_...
  • 1篇REVEAL...
  • 1篇VELOCI...
  • 1篇WENCHU...
  • 1篇ANISOT...
  • 1篇FAST
  • 1篇GENETI...
  • 1篇LITHOS...
  • 1篇MS8
  • 1篇MANTLE
  • 1篇BENEAT...
  • 1篇MARGIN...
  • 1篇EASTER...

机构

  • 1篇中国地震局地...

作者

  • 1篇常利军
  • 1篇丁志峰
  • 1篇王椿镛

传媒

  • 3篇Scienc...
  • 1篇地震学报
  • 1篇Earthq...

年份

  • 1篇2011
  • 1篇2010
  • 1篇2009
  • 2篇2008
5 条 记 录,以下是 1-5
排序方式:
首都圈地区SKS波分裂研究被引量:19
2008年
通过分析首都圈数字地震台网的49个宽频带和甚宽带台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法,求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了首都圈地区上地幔各向异性图象.首都圈地区的各向异性快波方向基本上呈WNW-ESE方向,快、慢波时间延迟为0.56—1.56 s.研究表明,首都圈地区上地幔存在明显的各向异性,引起各向异性的主要原因是研究区受太平洋板块俯冲作用下软流圈物质变形,使得上地幔橄榄岩等晶体的晶格优势取向沿物质流动方向.另外,中国大陆受印度板块与欧亚板块的强烈碰撞,大陆西部地壳增厚隆起,同时造成物质东向挤出,使得首都圈地区上地幔物质沿快波方向变形.通过研究区各向异性快波方向和伸展运动方向与GPS测量得到的速度场对比分析,首都圈地区壳幔变形可能具有垂直连贯变形特征.
常利军王椿镛丁志峰
关键词:首都圈地区各向异性
Seismic anisotropy of upper mantle in Sichuan and adjacent regions被引量:16
2008年
Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow shear waves were determined at each station using the grid searching method of minimum transverse energy and the stacking analysis method, and the image of upper mantle anisot-ropy was acquired. The fast-wave polarization directions are mainly NW-SE in the study area, NWW-SEE to its northeast and NS to its west. The delay time falls into the interval [0.47 s, 1.68 s]. The spatial variation of the fast-wave directions is similar to the variation of GPS velocity directions. The anisotropic image indicates that the regional tectonic stress field has resulted in deformation and flow of upper mantle material, and made the alignment of upper mantle peridotite lattice parallel to the di-rection of material deformation. The crust-upper mantle deformation in Sichuan and adjacent regions accords with the mode of vertically coherent deformation. In the eastern Tibetan Plateau, the crustal material was extruded to east or southeast due to SE traction force of the upper mantle material. The extrusion might be obstructed by a rigid block under the Sichuan Basin and the crust has been de-formed. After a long-term accumulation of tectonic strain energy, the accumulative energy suddenly released in Yingxiu town of the Longmenshan region, and Wenchuan MS8.0 earthquake occurred.
CHANG LiJunWANG ChunYongDING ZhiFeng
关键词:SKSLITHOSPHERICWENCHUAN
Seismic anisotropy of upper mantle in eastern China被引量:22
2009年
Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation.
CHANG LiJunWANG ChunYongDing ZhiFeng
关键词:EASTERNMANTLESKSLITHOSPHERE
Upper mantle anisotropy in the Ordos Block and its margins被引量:32
2011年
Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and temporary broadband seismograph networks deployed in the Ordos Block and its margins.Both the Silver and Chan and stacking analysis methods were used.In this way,an image of upper mantle anisotropy in the Ordos Block and its margins was acquired.In the western and northern margins of the Ordos Block,the fast-wave directions are consistently NW-SE.The fast-wave directions are mainly NWW-SEE and EW in the southern margin of the Ordos Block.In the eastern margin of the Ordos Block,the fast-wave directions are generally EW,although some run NEE-SWW or NWW-SEE.In the Ordos Block,the fast-wave directions trend near N-S in the north,but switch to near EW in the south.The delay time between fast and slow waves falls into the interval 0.48-1.50 s,and the average delay time at the stations in the Ordos Block is less than that in its margins.We suggest that the anisotropy of the stable Ordos Block is mainly caused by "fossil" anisotropy frozen in the ancient North China Craton.The NE-trending push of the northeastern margin of the Tibetan Plateau has caused NW-SE-trending lithospheric extension in the western and northern margins of the Ordos Block,and made the upper mantle flow southeastwards.This in turn has resulted in the alignment of the upper mantle peridotite lattice with the direction of material deformation.In the southern margin of the Ordos Block,the collision between the North China and Yangtze blocks resulted in the fast-wave direction running parallel to the collision boundary and the Qinling Orogen.Combining this with the APM and velocity structure of the Qinling Orogen,we propose that eastward-directed asthenospheric-mantle channel flow may have occurred beneath the Qinling Orogen.In the eastern margin of the Ordos Block,the complex anisotropic characteristics of the Fenhe Graben and Taihang Orogen
CHANG LiJunWANG ChunYongDING ZhiFeng
Crustal velocity structures beneath North China revealed by ambient noise tomography被引量:7
2010年
We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array. The study region is divided into grid with interval 0.25°×0.25°, and group velocity distribution maps between 4 s and 30 s are obtained using ambient noise tomography method. The lateral resolution is estimated to be 20-50 km for most of the study area. We construct a 3-D S wave velocity model by inverting the pure path dispersion curve at each grid using a genetic algorithm with smoothing constraint. The crustal structure observed in the model includes sedimentary basins such as North China basin, Yanqing-Huailai basin and Datong basin. A well-defined low velocity zone is observed in the Beijing-Tianjin-Tangshan region in 22-30 km depth range, which may be related to the upwelling of hot mantle material. The high velocity zone near Datong, Shuozhou and Qingshuihe within the depth range of 1-23 km reveals stable characteristics of Ordos block. The Taihangshan front fault extends to 12 km depth at least.
Lihua FangJianping WuZhifeng DingWeilai WangGiuliano Francesco Panza
共1页<1>
聚类工具0