本文利用中国开放式CO2浓度增高(Free-air CO2 Enrichment,简称FACE)系统平台,于2007年3月19日至5月24日小麦拔节至成熟期进行小麦冠层微气候及相关项目的连续观测,并结合能量平衡分析,研究中国FACE系统对小麦冠层能量平衡各分量的变化特征及水分利用率的影响。能量平衡分析结果表明,小麦冠层白天总显热通量FACE均高于对照,而总潜热通量FACE均低于对照,潜热通量FACE与对照的差异日最大值变化在-12~-63W·m-2之间,显热通量FACE与对照的差异最大值变化在12~78W·m-2之间。能量平衡是小气候变化的根本,利用P-M方程反演出的冠层群体气孔导度与实测的气孔导度相关关系较好,证明能量平衡的计算结果及小气候观测数据基本正确。观测期间内模拟计算结果表明,CO2浓度升高使小麦的水分利用减小约25.5mm,结合生物量的增加,FACE条件下小麦水分利用率增加约19%。
On the basis of the reported air quality index (API) and air pollutant monitoring data provided by the Guangzhou Environment Monitoring Stations over the last twenty-five years, the characteristics of air quality, prominent pollutants, and variation of the average annual concentrations of SOE, NOE, total suspended particulate (TSP), fine particulates (PM10), CO and dustfall in Guangzhou City were analyzed. Results showed that TSP was the prominent pollutant in the ambient air environment of Guangzhou City. Of the prominent pollutants, TSP accounted for nearly 62%, SOE 12.3%, and NOx 6.4%, respectively. The average API of Guangzhou over 6 years was higher than that of Beijing, Tianjin, Nanjing, Hangzhou, Suzhou and Shanghai, and lower than that of Shenzhen, Zhuhai and Shantou. Concentrations of air pollutants have shown a downward trend in recent years, but they are generally worse than ambient air quality standards for USA, Hong Kong and EU. SOE and NOx pollution were still serious, impling that waste gas pollution from all kinds of vehicles had become a significant problem for environmental protection in Guangzhou. The possible causes of worsening air quality were also discussed in this paper.