Sulfur-limestone was used in the autotrophic denitrification process to remove the nitrate and nitrite in a lab scale upflow biofilter.Synthetic water with four levels of nitrate and nitrite concentrations of 10,40,70 and 100 mg N/L was tested.When treating the low concentration of nitrate-or nitrite-contaminated water(10,40 mg N/L),a high removal rate of about 90% was achieved at the hydraulic retention time(HRT) of 3 hr and temperature of 20-25°C.At the same HRT,50% of the nitrate or nitrite could be removed even at the low temperature of 5-10°C.For the higher concentration nitrate and nitrite(70,100 mg N/L),longer HRT was required.The batch test indicated that influent concentration,HRT and temperature are important factors afiecting the denitrification eficiency.Molecular analysis implied that nitrate and nitrite were denitrified into nitrogen by the same microorganisms.The sequential two-step-reactions from nitrate to nitrite and from nitrite to the next-step product might have taken place in the same cell during the autotrophic denitrification process.
The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m 3 ·day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.