针对单频GPS(Global Position System)用户的载波相位周跳探测问题,在传统的载波相位和伪距组合方法的基础上提出了一种新的周跳探测方法.该方法将载波相位和码伪距的组合观测量在历元间做差形成差分序列,以此构造实时的周跳探测量,由于该探测量易受观测噪声的影响,因此使用仰角指数模型作为经验模型对于测距噪声进行估计,基于假设检验的方法,通过对该探测量是否超过相应的检测门限来判断是否存在周跳.在实测的GPS观测数据基础上,对这一方法进行了验证,结果表明:相对于传统的周跳探测方法,该方法可以更加及时、准确地发现较小的周跳,对于单频的GPS用户具有较好的适应性.
This paper investigates the problem of almanac affecting the signal acquisition time with two constraints: different age of data and multi-sets of almanac. The contributions made in this paper include: 1) the exploiting of signal acquisition concept to extend well-known almanac function of predicting visible satellite and initializing signal acquisition to minimizing the signal acquisition time; 2) a model based on code phase and Doppler frequency to reflect the impact of multi-sets of almanac on the signal acquisition time; 3) the evaluation of the existing GPS almanac with different broadcast strategy. The theoretical analyses and simulations conducted on three sets of almanac show that the model proposed in this paper is general and efficient for almanac design and application.