The stability and vibration of an elastic rod with a circular cross section under the constraint of a cylinder is discussed. The differential equations of dynamics of the constrained rod are established with Euler's angles as variables describing the attitude of the cross section. The existence conditions of helical equilibrium under constraint are discussed as a special configuration of the rod. The stability of the helical equilibrium is discussed in the realms of statics and dynamics, respectively. Necessary conditions for the stability of helical rod are derived in space domain and time domain, and the difference and relationship between Lyapunov's and Euler's stability concepts are discussed. The free frequency of flexural vibration of the helical rod with cylinder constraint is obtained in analytical form.