国家自然科学基金(61172164)
- 作品数:4 被引量:17H指数:2
- 相关作者:蒋建国杜跃张旭洪日昌齐美彬更多>>
- 相关机构:合肥工业大学中国人民解放军陆军军官学院合肥学院更多>>
- 发文基金:国家自然科学基金安徽省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于低秩稀疏分解与协作表示的图像分类算法被引量:2
- 2016年
- 目前,大部分图像分类算法为了获取较高的性能均需要充分的训练学习过程,然而在实际应用中,往往存在训练样本不足及过拟合等问题。为了避免上述问题出现,在朴素贝叶斯最近邻分类算法的原理框架下,基于非负稀疏编码、低秩稀疏分解以及协作表示提出一种非参数学习的图像分类算法。首先,基于非负稀疏编码和最大值汇聚操作表示图像信息,并构建具有低秩性质的同类训练图像集的局部特征矩阵;其次,采用低秩稀疏分解结合别类标签信息构建两类视觉词典以充分利用同类图像的相关性和差异性;最后基于协作表示表征测试图像并进行分类决策,实验结果验证了所提算法的有效性。
- 张旭蒋建国洪日昌杜跃
- 关键词:图像分类
- 大规模图像集中的代表性图像选取被引量:2
- 2014年
- 针对传统图像检索系统通过关键字搜索图像时缺乏语义主题多样性的问题,提出了一种基于互近邻一致性和近邻传播的代表性图像选取算法,为每个查询选取与其相关的不同语义主题的图像集合.该算法利用互近邻一致性调整图像间的相似度,再进行近邻传播(AP)聚类将图像集分为若干簇,最后通过簇排序选取代表性图像簇并从中选取中心图像为代表性图像.实验表明,本文方法的性能超过基于K-means的方法和基于Greedy K-means的方法,所选图像能直观有效地概括源图像集的内容,并且在语义上多样化.
- 齐美彬朱俊俊纪平蒋建国
- 一种新的近重复监控视频检测算法被引量:1
- 2013年
- 设计了一种使用视频镜头时序特征来实现级联式检测近重复视频的算法。首先在进行关键帧特征提取之前,直接在镜头层次上提取时序特征,初步滤除完全不相同的视频,然后对剩下的视频帧提取全局颜色特征和SURF特征进行逐步检测,最终获得与查询视频近重复的视频。对实验室的监控视频进行小范围的验证实验,实验结果表明,该算法与不用时序特征的方法相比有一定的有效性和准确性。
- 郭丁云杨艳芳朱俊俊齐美彬
- 关键词:监控视频SURF
- 基于朴素贝叶斯K近邻的快速图像分类算法被引量:12
- 2015年
- 朴素贝叶斯最近邻(NBNN)分类算法具有非特征量化和图像-类别度量方式的优点,但算法运行速度较慢,分类正确率较低.针对此问题,提出一种朴素贝叶斯K近邻分类算法,基于快速近似最近邻(FLANN)搜索特征的K近邻用于分类决策并去除背景信息对分类性能的影响;为了进一步提高算法的运行速度及减少算法的内存开销,采用特征选择的方式分别减少测试图像和训练图像集的特征数目,并尝试同时减少测试图像和训练图像集中的特征数目平衡分类正确率与分类时间之间的矛盾.该算法保留了原始NBNN算法的优点,无需参数学习的过程,实验结果验证了算法的正确性和有效性.
- 张旭蒋建国洪日昌杜跃
- 关键词:图像分类最近邻K近邻