在Gleeble 1500D热模拟机上对Al2O3/Cu-WC复合材料进行热压缩实验,研究变形温度为350-750℃、应变速率为0.01-5 s 1条件下的热变形行为。结果表明:Al2O3/Cu-WC复合材料高温流变应力—应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为229.17 kJ/mol。根据材料动态模型,计算并建立Al2O3/Cu-WC复合材料的热加工图,据此确定热变形流变失稳区及热变形过程的最佳工艺参数,其热加工温度为650-750℃,应变速率为0.1-1 s 1。
Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1.
Yi ZhangHui-Li SunAlex A.VolinskyBao-Hong TianZhe ChaiPing LiuYong Liu
利用Gleeble-1500D热模拟机,在温度为550,650,750,850,900℃,应变速率为0.001,0.01,0.1,1,10 s^(-1)的条件下,对Cu-1%Zr-0.15%Ce合金的高温变形过程中的流变应力进行研究,分析了动态再结晶的演变机制。结果表明:变形温度和应变速率对合金的流变应力有显著的影响,在550~750℃之间具有典型的动态回复特征,850~900℃具有动态再结晶热变形特征。通过流变应力、应变速率和变形温度之间的关系,建立高温热变形流变应力本构方程,得到合金的热激活能为430.51 k J·mol^(-1),与纯铜热压缩变形过程相比,高Zr含量Cu-1%Zr-0.15%Ce合金热激活能提高了105%。