A new multi-focus image fusion method using spatial frequency (SF) and morphological operators is proposed. Firstly, the focus regions are detected using SF criteria, Then the morphological operators are used to smooth the regions. Finally the fused image is constructed by cutting and pasting the focused regions of the source images. Experimental results show that the proposed algorithm performs well for multi-focus image fusion.
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.
This paper proposes a novel excitation controller using support vector machines (SVM) and approximate models. The nonlinear control law is derived directly based on an input-output approximation method via Taylor expansion, which not only avoids complex control development and intensive computation, but also avoids online learning or adjustment. Only a general SVM modelling technique is involved in both model identification and controller implementation. The robustness of the stability is rigorously established using the Lyapunov method. Several simulations demonstrate the effectiveness of the proposed excitation controller.