您的位置: 专家智库 > >

国家自然科学基金(70071042)

作品数:34 被引量:145H指数:7
相关作者:康立山黄樟灿朱琪朱金寿杨勇刚更多>>
相关机构:武汉理工大学武汉大学中南民族大学更多>>
发文基金:国家自然科学基金武汉大学科技创新基金教育部高等学校骨干教师资助计划更多>>
相关领域:理学自动化与计算机技术交通运输工程建筑科学更多>>

文献类型

  • 34篇中文期刊文章

领域

  • 18篇理学
  • 15篇自动化与计算...
  • 2篇交通运输工程
  • 1篇生物学
  • 1篇金属学及工艺
  • 1篇电子电信
  • 1篇建筑科学

主题

  • 5篇EVOLUT...
  • 3篇计算机
  • 3篇SOLVIN...
  • 3篇GENETI...
  • 2篇演化算法
  • 2篇遗传算法
  • 2篇收敛性
  • 2篇图像
  • 2篇郭涛算法
  • 2篇二值图
  • 2篇OPERAT...
  • 2篇SEARCH
  • 2篇TECHNI...
  • 2篇TSP
  • 2篇ALGORI...
  • 2篇BASED
  • 2篇PARALL...
  • 1篇调度
  • 1篇调度方案
  • 1篇动态规划

机构

  • 9篇武汉理工大学
  • 6篇武汉大学
  • 1篇中南民族大学

作者

  • 5篇黄樟灿
  • 5篇康立山
  • 4篇朱金寿
  • 4篇朱琪
  • 3篇杨勇刚
  • 2篇陈毓屏
  • 1篇梁意文
  • 1篇曹宏庆
  • 1篇刘赛
  • 1篇司马云瑞
  • 1篇方毅
  • 1篇胡晓林
  • 1篇郑刚
  • 1篇卿翊轩
  • 1篇邹秀芬
  • 1篇刘道海
  • 1篇吴志健
  • 1篇陈华新
  • 1篇陈盛双
  • 1篇陆昊娟

传媒

  • 18篇Wuhan ...
  • 4篇武汉理工大学...
  • 2篇武汉理工大学...
  • 2篇计算机工程与...
  • 2篇计算机科学
  • 1篇计算机研究与...
  • 1篇武汉理工大学...
  • 1篇计算机工程与...
  • 1篇计算机工程
  • 1篇计算机应用
  • 1篇计算机应用研...

年份

  • 2篇2005
  • 1篇2004
  • 18篇2003
  • 7篇2002
  • 6篇2001
34 条 记 录,以下是 1-10
排序方式:
基于基因库求解TSP的改进的反序—杂交算法被引量:6
2005年
文章对求解TSP的“反序-杂交”算法在反序时城市位置的选择方式上作了改进,同时限制对每个个体一次循环中反序的次数,提出一种“见好就收”的策略,并利用“基因库”(即保存了好边的矩阵)的思想来指导反序-杂交。实验证明,改进的算法在收敛性和求解速度方面都比原来经典的“反序-杂交”算法有很大的提高。
卿翊轩康立山陈毓屏
关键词:旅行商问题基因库
CPP问题的一种新的求解模型
2001年
对CPP问题进行讨论 ,提出了求解CPP问题的一个新的模型。将该问题转化为一个数值优化问题 ,最后用郭涛算法对其进行求解。将求解结果与有关文献的结果进行比较 ,发现所提出的算法效率要高于其他算法。
黄建华吴方才黄樟灿
关键词:NP难问题数值优化问题郭涛算法
公交车调度方案的研究被引量:27
2002年
公交车的调度问题是现代城市交通中的一个突出问题 .分别从乘客和公交车公司的利益出发 ,在合理的基础上假设建立了一个双目标规划模型 ,模型的求解充分利用已给数据 ,并设计了一个求公交车在不同时间段内的发车时间间隔算法 .
朱金寿朱琪杨勇刚杜鹏
关键词:公交车调度方案客流量
一种基于边缘特征的聚类学习新方法
2002年
人类认识世界的一种重要方法是将认识对象进行分类,分类可以凭借经验和专业知识来实现,而聚类分析作为一种定量方法.从数据分析的角度,给出了一个更准确、细致的分类工具.作为统计学的一个分支和一种无教师监督的学习方法.聚类分析已有几十年的研究历史,并取得了很多研究成果.目前.聚类学习的典型代表有K-means方法和K-medoid方法等[3].
刘道海方毅黄樟灿
关键词:图像处理数据处理计算机
车床管理的数学模型
2002年
讨论了自动化车床连续加工零件中工序定期检查和刀具更换的最优策略问题 ;建立了自动化车床中更换刀具的随机模型 ,为自动化车床的管理提供了科学依据 ,使损失达到最小。
朱金寿朱琪杨勇刚
关键词:数学模型自动化车床
Solving A Kind of High Complexity Multi-Objective Problems by A Fast Algorithm
2003年
A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to speed up the computation. It is very suitable for solving high complexity problems, and quickly yields solutions which converge to the Pareto-optimal set with high precision and uniform distribution. Some complicated multi-objective problems are solved by the algorithm and the results show that the algorithm is not only fast but also superior to other MOGAS and MOEAs, such as the currently efficient algorithm SPEA, in terms of the precision, quantity and distribution of solutions.
Zeng San-you, Ding Li-xin, Kang Li-shanDepartment of Computer Science,China University of GeoSciences, Wuhan 430074, Hubei, China
A New Definition and Calculation Model for Evolutionary Multi-Objective Optimization被引量:1
2003年
We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent.
Zhou Ai-min, Kang Li-shan, Chen Yu-ping, Huang Yu-zhenState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China
Do Search and Selection Operators Play Important Roles in Multi-Objective Evolutionary Algorithms:A Case Study被引量:1
2003年
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.
Yan Zhen-yu, Kang Li-shan, Lin Guang-ming ,He MeiState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, ChinaSchool of Computer Science, UC, UNSW Australian Defence Force Academy, Northcott Drive, Canberra, ACT 2600 AustraliaCapital Bridge Securities Co. ,Ltd, Floor 42, Jinmao Tower, Shanghai 200030, China
A New Evolutionary Algorithm for Solving Multi-Objective Optimization Problems被引量:1
2003年
Multi-objective optimization is a new focus of evolutionary computation research. This paper puts forward a new algorithm, which can not only converge quickly, but also keep diversity among population efficiently, in order to find the Pareto-optimal set. This new algorithm replaces the worst individual with a newly-created one by 'multi-parent crossover' , so that the population could converge near the true Pareto-optimal solutions in the end. At the same time, this new algorithm adopts niching and fitness-sharing techniques to keep the population in a good distribution. Numerical experiments show that the algorithm is rather effective in solving some Benchmarks. No matter whether the Pareto front of problems is convex or non-convex, continuous or discontinuous, and the problems are with constraints or not, the program turns out to do well.
D Chen Wen-ping, Kang Li-shanState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China
A Multi-Objective Optimal Evolutionary Algorithm Based on Tree-Ranking被引量:1
2003年
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
Shi Chuan, Kang Li-shan, Li Yan, Yan Zhen-yuState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China
共4页<1234>
聚类工具0