In this paper, the northward jump time of the western Pacific subtropical high(WPSH) is defined and analyzed on the interdecadal timescale. The results show that under global warming, significant interdecadal changes have occurred in the time of the WPSH northward jumps. From 1951 to 2012, the time of the first northward jump of WPSH has changed from "continuously early" to "continuously late", with the transition occurring in 1980. The time of the second northward jump of WPSH shows a similar change, with the transition occurring in 1978. In this study, we offer a new perspective by using the time of the northward jump of WPSH to explain the eastern China summer rainfall pattern change from "north-abundant-southbelow-average" to "south-abundant-north-below-average" at the end of the 1970 s. The interdecadal change in the time of the northward jump of WPSH corresponds not only with the summer rainfall pattern, but also with the Pacific decadal oscillation(PDO). The WPSH northward jump time corresponding to the cold(warm) phase of the PDO is early(late). Although the PDO and the El Nino–Southern Oscillation(ENSO)both greatly influence the time of the two northward jumps of WPSH, the PDO's effect is noticed before the ENSO's by approximately 1–2 months. After excluding the ENSO influence, we derive composite vertical atmospheric circulation for different phases of the PDO. The results show that during the cold(warm)phase of the PDO, the atmospheric circulations at 200, 500, and 850 h Pa all contribute to an earlier(later)northward jump of the WPSH.
Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.
The cold vortex is a major high impact weather system in northeast China during the warm season, its frequent activities also affect the short-term climate throughout eastern China. How to objectively and quantitatively predict the intensity trend of the cold vortex is an urgent and difficult problem for current short-term climate prediction. Based on the dynamical-statistical combining principle, the predicted results of the Beijing Climate Center's global atmosphereocean coupled model and rich historical data are used for dynamic-statistical extra-seasonal prediction testing and actual prediction of the summer 500-hPa geopotential height over the cold vortex activity area. The results show that this method can significantly reduce the model's prediction error over the cold vortex activity area, and improve the prediction skills. Furthermore, the results of the sensitivity test reveal that the predicted results are highly dependent on the quantity of similar factors and the number of similar years.
With the influence of global warming,the global climate has undergone significant inter-decadal variation since the late 1970s.Although El Nio-Southern Oscillation(ENSO)has been the strongest signal for predicting global climate inter-annual variability,its relation with the summer rainfall in China has significantly changed,and its indicative function on the summer rainfall in China has weakened.This has led to a significant decrease in the accuracy rate of early conceptual prediction models for the Three Rainfall Patterns in the summer of eastern China.On the basis of the difference analysis of atmospheric circulation system configuration in summer,as well as the interaction of ocean and atmospheric in previous winter between two phases,i.e.before and after the significant global warming(1951 to 1978 and 1979 to 2012,respectively),we concluded that(1)Under different inter-decadal backgrounds,the atmospheric circulations that impacted the Three Rainfall Patterns in the summer of eastern China showed consistency,but in the latter phase of the global warming,the Western Pacific Subtropical High(WPSH)was on the strong side,the position of which was in the south,and the blocking high in the Eurasia mid-high latitudes was active,while the polar vortex extended to the south,and meridional circulation intensified.This circulation background may have been conducive to the increase of the circulation frequency of Patterns II and III,and the decrease of the circulation frequency of Pattern I,thus leading to more Patterns II and III and fewer Pattern I in the summer rainfall of eastern China.(2)In the former phase,the corresponding previous winter SST fields of different rainfall patterns showed visible differences.The impact of ENSO on North Pacific Oscillation(NPO)was great,and the identification ability of which on Patterns I and II of summer rainfall was effective.In the latter phase,this identification ability decreased,while the impact of ENSO on the Pacific/North American(PNA)teleconnection pattern increased,and the
基于2013年8月中国中东部地区持续高温及其减弱过程,利用美国国家环境预报中心/美国国家大气研究中心逐日平均的500 h Pa高度场、风场再分析资料和美国国家海洋和大气管理局的海温重建扩展资料进行分析,通过前期海温强迫相似年的选取方法以及带通滤波和经验正交函数分解等方法提取出10—30 d的稳定分量,并通过对稳定分量的诊断分析探究了这次持续高温及其减弱过程的维持机制.研究发现:通过选取与个例前期海温强迫最相似的30年来代替常规的气候态30年(1981—2010年),所提取的气候态稳定分量所占的比重变化不大,稍有减弱,而异常型稳定分量占的比重显著性提高,且其所刻画的影响异常事件的天气系统强度及稳定性明显提高,能够更加清晰地显示延伸期天气过程的维持机制.这表明在提取稳定分量时考虑前期的海温强迫作用是非常有必要的.同时,通过对延伸期稳定分量的分析,表明此次持续高温及减退过程主要受到北极涛动、亚洲大陆中高纬纬向环流形势和西太平洋副热带高压(西太副高)强度、位置的共同影响.