A β cyclodextrin derivative bearing seven cationic arms and its singly charged analogue, i.e., per-6- deoxy-f-(1-methylimidazol-3-ium-3-yl)-β-cyclodextrin (3) and mono-fi-deoxy-6-(1-methylimidazol- 3-ium-3-yl)-β-cyclodextrin (4) were synthesized and fully characterized. Their induced aggregation behaviours towards two anionic surfactant, that is, sodium dodecyl sulfonate (SDS) and dioctyl sodium sulfosuccinate (Aerosol OT, AOT), were investigated by UV-vis, NMR, Zeta-potential, dynamic light scattering (DLS), and transmission electron microscopy. The results revealed that host 3 can induce the molecular aggregation of anionic surfactant at concentration far lower than its original CAC, leading to the larger diameter, the narrower size distribution and the higher thermal stability of the induced aggregate towards the anionic surfactant possessing more hydrophobic tails.
Sulfonatocalix[4]arene lowers the critical aggregation concentration of fluorocarbon surfactant pronouncedly by a factor of ca.100 to form binary amphiphilic aggregates on the basis of host-guest complexation,which was identified by1H NMR spectroscopy,fluorescence spectroscopy,optical transmittance spectroscopy,dynamic laser scattering,high-resolution transmission electron microscopy,scanning electron microscopy,and surface tension experiments.Moreover,the resulting aggregates can respond to external stimuli,including temperature and inclusion of competitor guest.Therefore,the present system may have potential applications in drug delivery systems.
Two β-cyclodextrin derivatives bearing appended quinolyl and isoquinolyl arms,i.e.mono-(6-quinolyl- 6-deoxy)-β-cyclodextrin(1) and mono-(6-isoquinolyl-6-deoxy)-β-cyclodextrin(2) were synthesized in satisfactory yields and fully characterized.Their original conformations and binding behaviors toward four bile salt guests,that is,sodium cholate(CA),sodium deoxycholate(DCA),sodium glycocholate (GCA),and sodium taurocholate(TCA),were investigated by means of fluorescence,circular dichroism and 2D NMR spectroscopy.The study of solution structures revealed that both quinolyl and isoquinolyl arms were located outside the cyclodextrin cavity.The results obtained from the fluorescence titrations showed that the binding abilities of hosts 1 and 2 with selected bile salts varied in an order of DCA 〉 CA 〉 GCA.The selective binding of hosts toward bile salt guests was discussed from the viewpoints of induced-fit and multiple binding.