Let R be a Gorenstein ring.We prove that if I is an ideal of R such that R/I is a semi-simple ring,then the Gorenstein flat dimension of R/I as a right R-module and the Gorenstein injective dimension of R/I as a left R-module are identical.In addition,we prove that if R→S is a homomorphism of rings and SE is an injective cogenerator for the category of left S-modules,then the Gorenstein flat dimension of S as a right R-module and the Gorenstein injective dimension of E as a left R-module are identical.We also give some applications of these results.
Let Λ and Γ be left and right Noetherian rings and Λ U a generalized tilting module with Γ = End( Λ U ). For a non-negative integer k, if Λ U is (k - 2)-Gorenstein with the injective dimensions of Λ U and U Γ being k, then the socle of the last term in a minimal injective resolution of Λ U is non-zero.