According to the rock engineering property and stability of high-steep open-pitslopes, various factors were collected on the basis of rock engineering system (RSE) theory,and the interaction matrix of stability evaluation was established.Then, the stabilityevaluation index (S_p) of the slope was put forward.Ranges of the S_p value and the correspondingstable state were given on the basis of thirty-six samples.It is found that the followingrelationships exist: unstable (easy landslide): S_p<-0.20; mid-stable (may be landslide):-0.200.63.Finally, the stability evaluation indexwas applied on the high-steep open-pit slope of one mine.Analysis results and monitoringdata indicate that the index meets the necessity of the property of slope engineering, and ithas an important engineering purpose for landslide forecasting of high-steep slopes.
The mechanism of floor heave was analyzed by establishing mechanics models and solving differential equations. The amount of floor heave is proportional to the abutment pressure of surrounding rock, roadway width, and the distance of support pressure peak to the roadway and is inversely proportional to the elastic modulus of floor rock. Using FLAC2D to simulate floor rock grouting in soft rock roadway verifies the active role of floor rock grouting in the floor controlling of soft rock roadway; floor rock grouting and grouting range directly impact on the stability scope of surrounding rock, namely, with the increase of grouting range, the subsidence of roof, the approach of both sides, and the amount of floor heave decreased gradually, the stability of surrounding rock is enhanced
ZHU Chuan-qu WANG Yong CHEN Miao-ming CHEN Zhi WANG Hong-ming