This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.
In this paper, we study the p-Laplacian-Like equations involving Hardy potential or involving critical exponent and prove the existence of one or infinitely many nontrivial solutions. The results of the equations discussed can be applied to a variety of different fields in applied mechanics.
This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.