In this paper,we briefly review the recent experimental progresses in quantum optics based on four-wave mixing(FWM) processes in hot rubidium vapor,particularly our two recent experiments in quantum information.We have experimentally produced strong quantum correlations between three bright beams generated by two cascaded FWM processes.The intensity difference squeezing with the cascaded system is enhanced to(-7.0±0.1)d B from the(-5.5±0.1)d B/(4.5±0.1)d B with only one FWM process.Also,this system can be easily extended to multiple modes using multiple FWM processes.Besides,we have also successfully realized a cascade all-optical transistor(AOT),which is driven by a very weak light beam about 800 photons in total.The required probe power for achieving a switching efficiency of 50% can be as low as 180 p W,and it can manipulate a light beam with power of 5.0×106 times more,which proves the cascade of the AOT.Both experiments may find wide applications in quantum information and optical communication.
We review our recent experimental progress in quantum technology employing amplification effect of four-wave mixing in a rubidium vapor. We have produced an intensity difference squeezed light source at frequencies as low as 1.5 kHz which is so far the lowest frequency at which squeezing has been observed in an atomic system. Moreover, we find that the bandwidth of our squeezed light source can be controlled with light intensity pumping. Using our non-classical light source, we have further developed a nonlinear Mach-Zehnder (MZ) interferometer, for which the maximum fringe intensity depends quadratically on the intensity of the phase-sensing field at the high-gain regime, leading to much better sensitivity than a linear MZ interferometer in which the beam splitters have the same phase-sensing intensity. The quantum technologies developed by our group could have great potential in areas such as precision measurement and quantum information.
We report the Hong–Ou–Mandel(HOM) interference, with visibility of 91%, produced from two independent single photons retrieved from collective atomic excitations in two separate cold-atom clouds with high optical depths of 90. The high visibility of the HOM dip is ascribed to the pure single photon in the Fock state that was generated from a dense-cold-atom cloud pumping by a short pulse. The visibility is always the same regardless of the time response of the single-photon detectors. This result experimentally shows that the single photons retrieved are in a separable temporal state with their idler photons.