Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm.Most of previous algorithms are based on the qubit systems.Herein a proposal for a universal circuit is given based on the qudit system,which is larger and can store more information.In order to prove its universality for quantum applications,an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation.The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions.In comparison to previous quantum qudit logical gates,each primitive qudit gate is only dependent on two free parameters and may be easily implemented.In experimental implementation,multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates.The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.
Two deterministic schemes are proposed to realize the assisted clone of an unknown four-particle entangled cluster- type state. The schemes include two stages. The first stage requires teleportation via maximal entanglement as the quantum channel. In the second stages of the protocols, two novel sets of mutually orthogonal basis vectors are constructed, With the assistance of the preparer through a four-particle or two-step two-particle projective measurement under these bases, the perfect copy of an original state can be produced. Comparing with the previous protocols which produce the unknown state and its orthogonal complement state at the site of the sender, the proposed schemes generate the unknown state deterministically.