The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode.