This paper is concerned with the Cauchy problems of one-dimensional compressible Navier-Stokes equations with density-dependent viscosity coefcients.By assumingρ0∈L1(R),we will prove the existence of weak solutions to the Cauchy problems forθ〉0.This will improve results in Jiu and Xin’s paper(Kinet.Relat.Models,1(2):313–330(2008))in whichθ〉12is required.In addition,We will study the large time asymptotic behavior of such weak solutions.
The Navier-Stokes system for one-dimensional compressible fluids with density-dependent viscosities when the initial density connects to vacuum continuously is considered in the present paper. When the viscosity coefficient u is proportional to pθ with 0 〈 θ 〈 1, the global existence and the uniqueness of weak solutions are proved which improves the previous results in [Vong, S. W., Yang, T., Zhu, C. J.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum II. J. Differential Equations, 192(2), 475-501 (2003)]. Here p is the density. Moreover, a stabilization rate estimate for the density as t → +∞ for any θ 〉 0 is also given.
In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-dimensional isentropic Navier-Stokes equations, and the free boundaries are the interfaces separating the gas from vacuum,across which the density changes discontinuosly.Smoothness of the solutions and the uniqueness of the weak solutions are also discussed.The present paper extends results in Luo-Xin-Yang[12] to the jump boundary conditions case.