Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.
Rong LiXingDong HePingPing XueHuaCong CiWei WuYuBao GaoHaLin Zhao
Little attention has been paid to plant calcium fractions in the desert.To address the characteristic of the calcium fractions of desert plants,we collected 25 plant species in Tengger Desert,observed the calcium crystals using an optical microscope and determined water soluble calcium,acetic acid soluble calcium,and hydrochloric acid soluble calcium.To do so,we used sequential fractionation procedures to probe the relationships among different functional groups,different growth forms,or different successional stages.The results showed that the psammophyte,the late successional plants,and the drought-resistant shrub and semi-shrub all held considerable calcium oxalate crystal compared to the grassland plants,the early successional plants,and the perennial herb.With the proceeding succession,the acetic acid soluble calcium decreased gradually,and the hydrochloric acid soluble calcium increased gradually.The perennial herb had more water soluble calcium,while shrub held greater hydrochloric acid soluble calcium.The grassland plants held more water soluble calcium,while psammophyte had greater hydrochloric acid soluble calcium.This implies that the plants that are relatively sensitive to drought hold more calcium ion,while the drought-resistance plants hold more calcium oxalate.Thus,the plant calcium components are in close relation to plant drought-resistance,and of important significance in plant physiology of the desert.
To address how the ratios of nitrogen and phosphorus (N:P ratios) in soil affect plant growth, we performed a two-factor (soil available N:P ratios and plant density) randomized block pot experiment to examine the relationships between soil N:P ratios, and the N:P ratios and growth rate of Artemisia ordosica seedlings. Under moderate water stress and adequate nutrient status, both soil N:P and plant density influenced the N:P ratios and growth rates of A. ordosica. With the increase of soil N:P ratios, the growth rates of A. ordosica seedlings decreased significantly. With the increase of soil N:P ratios, N:P ratios in A. ordosica seedlings increased significantly. While the nitrogen concentrations in the plant increased slightly, the phosphorus concentrations significantly decreased. With the increase of plant density, the shoot N:P ratios and growth rates significantly decreased, which resulted from soil N:P ratios. Thus, soil N:P ratios influenced the N:P ratios in A. ordosica seedlings, and hence, influenced its growth. Our results suggest that, under adequate nutrient environment, soil N:P ratios can be a limiting factor for plant growth.