Despite the significant improvement on spatial resolution, NanoSIMS still preserves relatively high mass resolution, sensitivity, and analytical precision. It has become an important analytical platform to determine chemical compositions of solid materials, and has been widely used in space, earth, life, and materials sciences, etc. By using a Cs+ ion beam with a size as small as 50 nm scanning over sample surfaces, we are able to obtain high spatial resolution images of up to 7 species simultaneously. When utilizing Faraday cup, high analytical precision of 0.3‰-0.5‰ (1SD) for C, O and S isotopic analysis can be achieved. Although this precision level is still lower than that of conventional SIMS, it already meets the major requirements of Earth Sciences. In 2011, the first NanoSIMS of China (Cameca NanoSIMS 50L) was installed at Institute of Geology and Geophysics, Chinese Academy of Sciences. Based on the working mechanism and analytical modes of the instrument, this paper will systematically introduce the analytical methods established with the NanoSIMS and their potential applications in earth sciences. These methods include trace element distribution images in mineral zoning, high spatial resolution (2-5/am) Pb-Pb and U-Pb dating, water content and H isotopic analysis for silicate glass and apatite, C isotopic analysis for diamond and graphite, O isotopic analysis for carbonate, S isotopic analysis for sulfides. In addition, the specific requirements for sample preparation will also be introduced in order to facilitate domestic earth scientists' use.
YANG WeiHU SenZHANG JianChaoHAO JiaLongLIN YangTing
Yutu is the first lunar rover after the Apollo program and Luna missions. One of the payloads on the Yutu rover, the Visible and Near-infrared Imaging Spectrometer (VNIS), has acquired four VIS/NIR images and SWIR spectra near its landing site in Mare Imbrium. The radiance images were reduced through repairing bad lines and bad points, and applying flat field correction, and then were converted into reflectance values based on the solar irradiance and angles of incidence. A significant shadow effect was observed in the VIS/NIR image. The shadowed regions show lower reflectance with a darkening trend compared with illuminated regions. The re- flectance increased by up to 24% for entire images and 17% for the VIS/NIR-SWlR overlapping regions after shadow correction. The correction for the shadow effect will remarkably decrease the estimate of FeO content, by up to 4.9 wt.% in this study. The derived FeO contents of CD-005-008 after shadow correction are around 18.0 wt.%.
Sen HuYang-Ting LinBin LiuWei YangZhi-Ping HeWei-Fan Xing