Quasi-likelihood nonlinear models (QLNM) include generalized linear models as a special case. Under some regularity conditions, the rate of the strong consistency of the maximum quasi-likelihood estimation (MQLE) is obtained in QLNM. In an important case, this rate is O(n-^1/2(loglogn)^1/2), which is just the rate of LIL of partial sums for i.i.d variables, and thus cannot be improved anymore.
This paper proposes some regularity conditions. On the basis of the proposed regularity conditions, we show the strong consistency of maximum quasi-likelihood estimation (MQLE) in quasi-likelihood nonlinear models (QLNM). Our results may be regarded as a further generalization of the relevant results in Ref. [4].