Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of this,electro-Fenton(EF)was coupled with sweeping gas membrane distillation(SGMD)in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface,so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate.During the so-called EF-MD process,an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface.It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L.Effective interceptions can be achieved in a wide temperature range,even though the permeate flux of phenol was also intensified.The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions,which endowed the long-term stability of the system.This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.
Hongxin LiuKuiling LiKunpeng WangZhiyong WangZimou LiuSichao ZhuDan QuYu ZhangJun Wang
New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment.Electro-Fenton technology is an effective method to remove PPCPs from water.Novel particle electrodes(MMT/rGO/Fe_(3)O_(4))were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional electro-Fenton(3D-EF)system.The electrodes combined the catalytic property of Fe3O4,hydrophilicity of montmorillonite and electrical conductivity of graphene oxides,and applied for the degradation of Acyclovir(ACV)with high efficiency and ease of operation.At optimal condition,the degradation rate of ACV reached 100%within 120 min,and the applicable pH range could be 3 to 11 in the 3D-EF system.The stability and reusability of MMT/rGO/Fe_(3)O_(4)particle electrodes were also studied,the removal rate of ACV remained at 92%after 10 cycles,which was just slightly lower than that of the first cycle.Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.
Nan CaiGe BaiTing ZhangYongqian LeiPengran GuoZhiliang ChenJingwei Xu